Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Arch Bone Jt Surg ; 12(2): 92-101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420521

RESUMO

Osteoarthritis (OA) can arise from various factor including trauma, overuse, as well as degeneration resulting from age or disease. The specific treatment options will vary based on the severity of the condition, and the affected joints. Some common treatments for OA include lifestyle modifications, medications, physical therapy, surgery and tissue engineering (TE). For cartilage tissue engineering (CTE), three-dimension (3D) scaffolds are made of biocompatible natural polymers, which allow for the regeneration of new cartilage tissue. An ideal scaffold should possess biological and mechanical properties that closely resemble those of the cartilage tissue, and lead to improved functional of knee. These scaffolds are specifically engineered to serve as replacements for damaged and provide support to the knee joint. 3D-bioprinted scaffolds are made of biocompatible materials natural polymers, which allow for the regeneration of new cartilage. The utilization of 3D bioprinting method has emerged as a novel approach for fabricating scaffolds with optimal properties for CTE applications. This method enables the creation of scaffolds that closely mimic the native cartilage in terms of mechanical characteristics and biological functionality. Alginate, that has the capability to fabricate a cartilage replacement customized for each individual patient. This polymer exhibits hydrophilicity, biocompatibility, and biodegradability, along with shear-thinning properties. These unique properties enable Alginate to be utilized as a bio-ink for 3D bioprinting method. Furthermore, chondrogenesis is the complex process through which cartilage is formed via a series of cellular and molecular signaling. Signaling pathway is as a fundamental mechanism in cartilage formation, enhanced by the incorporation of biomolecules and growth factors that induce the differentiation of stem cells. Accordingly, ongoing review is focusing to promote of 3D bioprinting scaffolds through the utilization of advanced biomolecules-loading of Alginate-based that has the capability to fabricate a cartilage replacement tailored specifically to each patient's unique needs and anatomical requirements.

2.
Mater Today Bio ; 23: 100872, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38075257

RESUMO

Tissue-engineered bone substitutes, characterized by favorable physicochemical, mechanical, and biological properties, present a promising alternative for addressing bone defects. In this study, we employed an innovative 3D host-guest scaffold model, where the host component served as a mechanical support, while the guest component facilitated osteogenic effects. More specifically, we fabricated a triangular porous polycaprolactone framework (host) using advanced 3D printing techniques, and subsequently filled the framework's pores with tragacanth gum-45S5 bioactive glass as the guest component. Comprehensive assessments were conducted to evaluate the physical, mechanical, and biological properties of the designed scaffolds. Remarkably, successful integration of the guest component within the framework was achieved, resulting in enhanced bioactivity and increased strength. Our findings demonstrated that the scaffolds exhibited ion release (Si, Ca, and P), surface apatite formation, and biodegradation. Additionally, in vitro cell culture assays revealed that the scaffolds demonstrated significant improvements in cell viability, proliferation, and attachment. Significantly, the multi-compartment scaffolds exhibited remarkable osteogenic properties, indicated by a substantial increase in the expression of osteopontin, osteocalcin, and matrix deposition. Based on our results, the framework provided robust mechanical support during the new bone formation process, while the guest component matrix created a conducive micro-environment for cellular adhesion, osteogenic functionality, and matrix production. These multi-compartment scaffolds hold great potential as a viable alternative to autografts and offer promising clinical applications for bone defect repair in the future.

3.
Front Bioeng Biotechnol ; 11: 1168504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469447

RESUMO

Population ageing and various diseases have increased the demand for bone grafts in recent decades. Bone tissue engineering (BTE) using a three-dimensional (3D) scaffold helps to create a suitable microenvironment for cell proliferation and regeneration of damaged tissues or organs. The 3D printing technique is a beneficial tool in BTE scaffold fabrication with appropriate features such as spatial control of microarchitecture and scaffold composition, high efficiency, and high precision. Various biomaterials could be used in BTE applications. PCL, as a thermoplastic and linear aliphatic polyester, is one of the most widely used polymers in bone scaffold fabrication. High biocompatibility, low cost, easy processing, non-carcinogenicity, low immunogenicity, and a slow degradation rate make this semi-crystalline polymer suitable for use in load-bearing bones. Combining PCL with other biomaterials, drugs, growth factors, and cells has improved its properties and helped heal bone lesions. The integration of PCL composites with the new 3D printing method has made it a promising approach for the effective treatment of bone injuries. The purpose of this review is give a comprehensive overview of the role of printed PCL composite scaffolds in bone repair and the path ahead to enter the clinic. This study will investigate the types of 3D printing methods for making PCL composites and the optimal compounds for making PCL composites to accelerate bone healing.

4.
Int J Biol Macromol ; 241: 124343, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37054856

RESUMO

Tragacanth is an abundant natural gum extracted from some plants and is dried for use in various applications from industry to biomedicines. It is a cost-effective and easily accessible polysaccharide with desirable biocompatibility and biodegradability, drawing much attention for use in new biomedical applications such as wound healing and tissue engineering. Moreover, this anionic polysaccharide with a highly branched structure has been used as an emulsifier and thickening agent in pharmaceutical applications. In addition, this gum has been introduced as an appealing biomaterial for producing engineering tools in drug delivery. Furthermore, the biological properties of tragacanth gum have made it a favorable biomaterial in cell therapies, and tissue engineering. This review aims to discuss the recent studies on this natural gum as a potential carrier for different drugs and cells.


Assuntos
Tragacanto , Tragacanto/química , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Excipientes , Terapia Baseada em Transplante de Células e Tecidos
5.
ACS Omega ; 8(8): 7378-7394, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873019

RESUMO

Polycaprolactone scaffolds were designed and 3D-printed with different pore shapes (cube and triangle) and sizes (500 and 700 µm) and modified with alkaline hydrolysis of different ratios (1, 3, and 5 M). In total, 16 designs were evaluated for their physical, mechanical, and biological properties. The present study mainly focused on the pore size, porosity, pore shapes, surface modification, biomineralization, mechanical properties, and biological characteristics that might influence bone ingrowth in 3D-printed biodegradable scaffolds. The results showed that the surface roughness in treated scaffolds increased compared to untreated polycaprolactone scaffolds (R a = 2.3-10.5 nm and R q = 17- 76 nm), but the structural integrity declined with an increase in the NaOH concentration especially in the scaffolds with small pores and a triangle shape. Overall, the treated polycaprolactone scaffolds particularly with the triangle shape and smaller pore size provided superior performance in mechanical strength similar to that of cancellous bone. Additionally, the in vitro study showed that cell viability increased in the polycaprolactone scaffolds with cubic pore shapes and small pore sizes, whereas mineralization was enhanced in the designs with larger pore sizes. Based on the results obtained, this study demonstrated that the 3D-printed modified polycaprolactone scaffolds exhibit a favorable mechanical property, biomineralization, and better biological properties; therefore, they can be applied in bone tissue engineering.

6.
Bioact Mater ; 20: 137-163, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35663339

RESUMO

Natural bone constitutes a complex and organized structure of organic and inorganic components with limited ability to regenerate and restore injured tissues, especially in large bone defects. To improve the reconstruction of the damaged bones, tissue engineering has been introduced as a promising alternative approach to the conventional therapeutic methods including surgical interventions using allograft and autograft implants. Bioengineered composite scaffolds consisting of multifunctional biomaterials in combination with the cells and bioactive therapeutic agents have great promise for bone repair and regeneration. Cellulose and its derivatives are renewable and biodegradable natural polymers that have shown promising potential in bone tissue engineering applications. Cellulose-based scaffolds possess numerous advantages attributed to their excellent properties of non-toxicity, biocompatibility, biodegradability, availability through renewable resources, and the low cost of preparation and processing. Furthermore, cellulose and its derivatives have been extensively used for delivering growth factors and antibiotics directly to the site of the impaired bone tissue to promote tissue repair. This review focuses on the various classifications of cellulose-based composite scaffolds utilized in localized bone drug delivery systems and bone regeneration, including cellulose-organic composites, cellulose-inorganic composites, cellulose-organic/inorganic composites. We will also highlight the physicochemical, mechanical, and biological properties of the different cellulose-based scaffolds for bone tissue engineering applications.

7.
Biomater Adv ; 137: 212840, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929269

RESUMO

There is a long history behind applying biological macromolecules like Aloe vera (AV) in regenerative medicine; endowed with anti-inflammatory and antimicrobial activities besides improving immune activity, AV has always been of particular interest to regenerate/reconstruct injuries and burns. In the present study, aligned electrospun polycaprolactone (PCL)-silk fibroin (SF) fibers containing different percentages of AV (0, 2.5, 5, and 7.5%wt) were fabricated for stromal regeneration. The results illustrated that a uniform bead-free structure was obtained, and the AV incorporation decreased the mean fiber diameter from 552 down to 182 nm and led to more alignment in the fibers. The Young's modulus raised from 4.96 to 5.26 MPa by higher amount of AV up to 5%wt. It is noteworthy that both the fiber alignment and AV affected the scaffolds' transparency and water uptake to increase. The human stromal keratocyte cells (hSKC)s culture revealed that the addition of AV and morphological properties of scaffolds encouraged cell adhesion and proliferation. The mRNA expression level for keratocan and ALDH3A1 and immunocytochemistry F-actin revealed the positive effect of AV on hSKCs differentiation. Our study indicated the promising potential of AV as a biological macromolecule for stromal tissue regeneration.


Assuntos
Aloe , Fibroínas , Aloe/química , Proliferação de Células , Fibroínas/farmacologia , Humanos , Poliésteres , Engenharia Tecidual/métodos , Tecidos Suporte/química
8.
J Microencapsul ; 39(3): 226-238, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35384786

RESUMO

In this study, chitosan-coated niosome (ChN) was utilised for bioavailability enhancement of curcumin (Cn) and boswellic acids (BAs). The bare niosome (BN) was prepared by the heating method and optimised by using the mixture design procedure. Physicochemical stability, as well as the in vitro release, and bioavailability of Cn and BAs in BN and ChN were studied. The optimised BN had a mean diameter of 70.00 ± 0.21 nm and surface charge of -31.00 ± 0.25 mv, which changed to 60.01 ± 0.20 nm and +40.00 ± 0, respectively, in ChN. In-vitro digestion study revealed chitosan layer augmented the bioavailability of Cn and BAs to 79.02 ± 0.13 and 81 ± 0.10, respectively. The chitosan layer obviously improved the physical stability of Cn and BA in the niosome vehicle, by means of vesicle size, zeta potential, and encapsulation efficiency. The ChN was considered to be promising delivery system for increasing the bioavailability of Cn and BAs.


Assuntos
Quitosana , Curcumina , Nanopartículas , Digestão , Portadores de Fármacos , Lipossomos , Tamanho da Partícula
9.
J Liposome Res ; 32(3): 284-292, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34957899

RESUMO

This study aims to improve the curcumin bio-stability and brain permeability by loading in bare niosome (BN) and chitosan-coated niosome (ChN). Span 60, tween 60, and cholesterol were optimized as niosome shell components to attain the highest encapsulation efficiency (EE), besides the lowest particle size, using the mixture design method. The resulting optimized BN had a mean diameter of 80 ± 0.2 nm and surface charge of -31 ± 0.1 mv, which changed to 85 ± 0.15 nm and 35 ± 0.12 mv, respectively, after applying the chitosan layer. The EE% in bare niosome were about 80 ± 0.2, which changed to 82 ± 0.21 in ChN. The optimized formulation displayed sustained release, following the Hixson-Crowell model.Wistar rats were subjected to intraperitoneal injection (i.p.) of BN and ChN to evaluate the blood-brain barrier permeability of the curcumin. In this regard, ChN significantly increased curcumin concentration in different parts of the liver, plasma, and central nervous system (cerebral cortex, cerebellum, and stratum), compared with BN. Altogether, our results showed that ChN could be used as a promising delivery system for the treatment of some neurological diseases such as Alzheimer's.


Assuntos
Quitosana , Curcumina , Nanopartículas , Animais , Barreira Hematoencefálica , Curcumina/farmacologia , Portadores de Fármacos , Excipientes , Lipossomos , Tamanho da Partícula , Ratos , Ratos Wistar
10.
ACS Biomater Sci Eng ; 7(12): 5397-5431, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34797061

RESUMO

Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Regeneração Óssea , Osso e Ossos , Células-Tronco
11.
J Biomed Mater Res A ; 109(11): 2164-2172, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33866680

RESUMO

Oral administration of insulin is one of the most challenging topics within this area, because insulin is degraded in stomach before it enters the bloodstream. In this study, for the first time, a nano-carrier for controlled and targeted oral delivery of insulin was developed using de-esterified Tragacanth and chitosan. The fabricated nanoparticles were synthesized using coacervation technique and their properties were optimized using response surface methodology. The effect of experimental variables on the particle size and loading efficiency was examined. In addition, the interactions between components were analyzed using Fourier transform infrared. The thermal stability of nanoparticles was studied by thermal gravimetric analysis. The insulin loading efficiency was measured and in vitro release profile and ex vivo insulin permeability was determined. Optimized nanoparticles showed spherical shape with a size less than 200 nm and zeta potential of +17 mV. Owing to their nanoscale dimensions and mucoadhesiveness, nanoparticles were synthesized using medium molecular weight of Chitosan. The insulin loading efficacy for the system was 6.4%, released under simulated gastrointestinal conditions in a pH-dependent manner. Based on all of the obtained results, it can be concluded that these nanoparticles can potentially be utilized as a carrier for the oral insulin delivery.


Assuntos
Quitosana , Portadores de Fármacos , Insulina , Nanocompostos , Tragacanto , Administração Oral , Animais , Quitosana/química , Quitosana/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Insulina/química , Insulina/farmacocinética , Insulina/farmacologia , Masculino , Nanocompostos/química , Nanocompostos/uso terapêutico , Ratos , Ratos Wistar , Tragacanto/química , Tragacanto/farmacologia
12.
Int J Nanomedicine ; 15: 6167-6182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922000

RESUMO

BACKGROUND: Among the novel cancer treatment strategies, combination therapy is a cornerstone of cancer therapy. MATERIALS AND METHODS: Here, combination therapy with targeted polymer, magnetic hyperthermia and chemotherapy was presented as an effective therapeutic technique. The DOX-loaded PLA-PEG-FA magnetic nanoparticles (nanocarrier) were prepared via a double emulsion method. The nanocarriers were characterized by particle size, zeta potential, morphology, saturation magnetizations and heat generation capacity, and the encapsulation efficiency, drug content and in-vitro drug release for various weight ratios of PLA:DOX. Then, cytotoxicity, cellular uptake and apoptosis level of nanocarrier-treated cells for HeLa and CT26 cells were investigated by MTT assay, flow cytometry, and apoptosis detection kit. RESULTS AND CONCLUSIONS: The synthesized nanoparticles were spherical in shape, had low aggregation and considerable magnetic properties. Meanwhile, the drug content and encapsulation efficiency of nanoparticles can be achieved by varying the weight ratios of PLA:DOX. The saturation magnetizations of nanocarriers in the maximum applied magnetic field were 59/447 emu/g and 28/224 emu/g, respectively. Heat generation capacity of MNPs and nanocarriers were evaluated in the external AC magnetic field by a hyperthermia device. The highest temperature, 44.2°C, was measured in the nanocarriers suspension at w/w ratio 10:1 (polymer:DOX weight ratio) after exposed to the magnetic field for 60 minutes. The encapsulation efficiency improved with increasing polymer concentration, since the highest DOX encapsulation efficiency was related to the nanocarriers' suspension at w/w ratio 50:1 (79.6 ± 6.4%). However, the highest DOX loading efficiency was measured in the nanocarriers' suspension at w/w ratio 10:1 (5.14 ± 0.6%). The uptake efficiency and apoptosis level of nanocarrier-treated cells were higher than those of nanocarriers (folic acid free) and free DOX-treated cells in both cell lines. Therefore, this targeted nanocarrier may offer a promising nanosystem for cancer-combined chemotherapy and hyperthermia.


Assuntos
Doxorrubicina/farmacologia , Ácido Fólico/farmacologia , Hipertermia Induzida , Nanopartículas de Magnetita/química , Neoplasias/terapia , Polietilenoglicóis/química , Animais , Apoptose/efeitos dos fármacos , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Células HeLa , Humanos , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Tamanho da Partícula , Polietilenoglicóis/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
13.
Int J Biol Macromol ; 161: 377-388, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526297

RESUMO

Applying biological macromolecule like silk fibroin (SF) is a promising material for corneal tissue engineering. However, designing an appropriate tissue-like construct to compensate the shortages of traditional routes are still challenging. SF besides possessing biocompatibility and transparency, the biomaterial should be mechanically strong. In the present study, a hybrid scaffold composed of poly-ε-caprolactone (PCL)-silk fibroin (SF) is fabricated through electro spinning technique. The aligned and non-aligned PCL-SF scaffolds with various weight ratios are fabricated. The results reveal that the addition of SF yields the scaffolds with more uniform and aligned structure. The ultimate tensile strength and Young's modulus of aligned and non-aligned PCL-SF (60:40 and 50:50) fibers are in an acceptable range for cornea applications. It is noteworthy that the aligned PCL-SF (60:40 and 50:50) scaffolds have more transparency, hydrophilicity, water uptake, and in vitro degradation rate than the other scaffolds. The cell compatibility results show that human stromal keratocyte cells are attached and proliferated on the aligned and non-aligned PCL-SF scaffolds. The overall results recommend that PCL-SF (60:40 and 50:50) scaffolds have a great potential for human corneal stromal regeneration.


Assuntos
Córnea/citologia , Fibroínas/química , Poliésteres/química , Seda/química , Células Estromais/citologia , Tecidos Suporte/química , Materiais Biocompatíveis/química , Fenômenos Químicos , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Mecânicos , Regeneração , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual
14.
Cell Tissue Res ; 381(2): 255-272, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32405685

RESUMO

Mesenchymal stem cells (MSCs) are promising cell candidates for cartilage regeneration. Furthermore, it is important to control the cell-matrix interactions that have a direct influence on cell functions. Providing an appropriate microenvironment for cell differentiation in response to exogenous stimuli is a critical step towards the clinical utilization of MSCs. In this study, hydrogels consisted of different proportions of alginates that were modified using gelatin, collagen type I and arginine-glycine-aspartic acid (RGD) and were evaluated regarding their effects on mesenchymal stem cells. The effect of applying hydrostatic pressure on MSCs encapsulated in collagen-modified alginate with and without chondrogenic medium was evaluated 7, 14 and 21 days after culture, which is a comprehensive evaluation of chondrogenesis in 3D hydrogels with mechanical and chemical stimulants. Alcian blue, safranin O and dimethyl methylene blue (DMMB) staining showed the chondrogenic phenotype of cells seeded in the collagen- and RGD-modified alginate hydrogels with the highest intensity after 21 days of culture. The results of real-time PCR for cartilage-specific extracellular matrix genes indicated the chondrogenic differentiation of MSCs in all hydrogels. Also, the synergic effects of chemical and mechanical stimuli are indicated. The highest expression levels of the studied genes were observed in the cells embedded in collagen-modified alginate by loading after 14 days of exposure to the chondrogenic medium. The effect of using IHP on encapsulated MSCs in modified alginate with collagen type I is equal or even higher than using TGF-beta on encapsulated cells. The results of immunohistochemical assessments also confirmed the real-time PCR data.


Assuntos
Condrogênese , Matriz Extracelular/metabolismo , Hidrogéis/química , Mecanotransdução Celular , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual , Alginatos/química , Animais , Cartilagem Articular , Células Cultivadas , Condrócitos , Colágeno Tipo I/química , Gelatina/química , Masculino , Peptídeos/química , Coelhos , Tecidos Suporte
15.
J Control Release ; 321: 145-158, 2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32035190

RESUMO

Spinal cord injury (SCI) induces pathological and inflammatory responses that create an inhibitory environment at the site of trauma, resulting in axonal degeneration and functional disability. Combination therapies targeting multiple aspects of the injury, will likely be more effective than single therapies to facilitate tissue regeneration after SCI. In this study, we designed a dual-delivery system consisting of a neuroprotective drug, minocycline hydrochloride (MH), and a neuroregenerative drug, paclitaxel (PTX), to enhance tissue regeneration in a rat hemisection model of SCI. For this purpose, PTX-encapsulated poly (lactic-co-glycolic acid) PLGA microspheres along with MH were incorporated into the alginate hydrogel. A prolonged and sustained release of MH and PTX from the alginate hydrogel was obtained over eight weeks. The obtained hydrogels loaded with a combination of both drugs or each of them alone, along with the blank hydrogel (devoid of any drugs) were injected into the lesion site after SCI (at the acute phase). Histological assessments showed that the dual-drug treatment reduced inflammation after seven days. Moreover, a decrease in the scar tissue, as well as an increase in neuronal regeneration was observed after 28 days in rats treated with dual-drug delivery system. Over time, a fast and sustained functional improvement was achieved in animals that received dual-drug treatment compared with other experimental groups. This study provides a novel dual-drug delivery system that can be developed to test for a variety of SCI models or neurological disorders.


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Animais , Minociclina , Regeneração Nervosa , Paclitaxel , Ratos , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico
16.
ACS Appl Mater Interfaces ; 12(3): 3393-3406, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31874022

RESUMO

Risk factors of nonhealing wounds include persistent bacterial infections and rapid onset of dehydration; therefore, wound dressings should be used to accelerate the healing process by helping to disinfect the wound bed and provide moisture. Herein, we introduce a transparent tributylammonium alginate surface-modified cationic polyurethane (CPU) wound dressing, which is appropriate for full-thickness wounds. We studied the physicochemical properties of the dressing using Fourier transform infrared, 1H NMR, and 13C NMR spectroscopies and scanning electron microscopy, energy-dispersive X-ray, and thermomechanical analyses. The surface-modified polyurethane demonstrated improved hydrophilicity and tensile Young's modulus that approximated natural skin, which was in the range of 1.5-3 MPa. Cell viability and in vitro wound closure, assessed by MTS and the scratch assay, confirmed that the dressing was cytocompatible and possessed fibroblast migratory-promoting activity. The surface-modified CPU had up to 100% antibacterial activity against Staphylococcus aureus and Escherichia coli as Gram-positive and Gram-negative bacteria, respectively. In vivo assessments of both noninfected and infected wounds revealed that the surface-modified CPU dressing resulted in a faster healing rate because it reduced the persistent inflammatory phase, enhanced collagen deposition, and improved the formation of mature blood vessels when compared with CPU and commercial Tegaderm wound dressing.


Assuntos
Alginatos/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Poliuretanos/química , Compostos de Amônio Quaternário/química , Infecção dos Ferimentos/tratamento farmacológico , Animais , Avaliação Pré-Clínica de Medicamentos , Módulo de Elasticidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Humanos , Masculino , Poliuretanos/administração & dosagem , Ratos , Ratos Wistar , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Cicatrização , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/fisiopatologia
17.
Int J Artif Organs ; 42(2): 95-108, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30345843

RESUMO

In the present study, the effect of adding different concentrations of silicon on physical, mechanical and biological properties of a synthesized aqueous precipitated eggshell-derived hydroxyapatite (e-HA) was evaluated. No secondary phases were detected by X-ray diffraction for the specimens e-HA and e-HA containing silicon (Si-e-HAs) before and after heating at 1200°C. A reduction in the crystallite size and a-axis as well as an increase in c-axis was occurred when silicon replacement was happened in the structure of e-HA. The presence of Si-O vibrations and carbonate modes for Si-e-HAs was confirmed by Fourier transform infrared spectroscopy analysis. The range of porosity and density was varied from 25% and 2.4 g cm-3 to 7% and 2.8 g cm-3 for e-HA and Si-e-HAs. The values of Young's modulus ( E) and compressive strength were varied for e-HA and Si-e-HAs. The porous structure of the samples was reduced when they were heated as e-HA kept the porous microstructure containing some dense areas and Si-e-HAs possessed a rough surface including slight levels of microporosity. The acellular in vitro bioactivity represented different apatite morphologies for e-HA and Si-e-HAs. The G-292 osteoblastic cells were stretched well on the surface with polygon-shaped morphology for 0.8Si-e-HA after 7 days of culture. According to MTT assay and alkaline phosphatase test, the maximum cell activity was related to 0.8Si-e-HA. The minimum inhibitory concentration for 0.8Si-e-HA and e-HA was estimated to be about 3.2 and 4.4 mg/mL, respectively. In overall, the sample 0.8Si-e-HA exhibited a higher bacteriostatic effect than e-HA against gram-negative bacterial strain Escherichia coli.


Assuntos
Materiais Biocompatíveis , Durapatita , Casca de Ovo , Osteossarcoma/patologia , Silício , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
18.
Chem Biol Drug Des ; 88(3): 370-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27062095

RESUMO

Silica nanoparticles can be potentially considered the carriers of controlled drug systems. In this research, non-steroidal anti-inflammatory drugs were used. Diclofenac sodium and piroxicam were loaded on the considered nanosilica using solvent evaporation method. To prove drug encapsulation on the nanosilica and its rate, infrared spectroscopy, X-ray diffraction, and BET were used, and after proving the existence of the drug in the nanosilica matrix and determining the amount of loading, dissolution test was performed in an environment similar to that of stomach and intestine in terms of pH. Drug loading percentage showed that over 90% of drugs were loaded on nanosilica. Dissolution tests in stomach pH environment showed the control samples (drug without SBA-15) released considerable amount of drugs (about 90%) within first 15 min, when it was about 10-20% for the matrixes. Furthermore, release rate of drugs from matrixes has shown slower rate in comparison with control samples. It was indicated nanosilica has the ability of retaining the drugs in acidic pH and prevented their release. Furthermore, the drugs were released in a controlled manner in small intestine, which is the main absorption site.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Portadores de Fármacos , Nanopartículas/química , Dióxido de Silício/química , Trato Gastrointestinal/metabolismo , Espectrofotometria Infravermelho , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...